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Abstract. The determination of concentration profiles of impurities in silicon from angle scans of emitted x-ray
fluorescence intensities using the maximum-entropy method is studied. Existence and convergence properties of
the maxium- entropy method are discussed. The application of the maximum-entropy method to Grazing emission
X-Ray Fluorescence Spectromety is compared with an analytical method. It is found that, provided noise levels
are sufficiently low, concentration profiles can be reconstructed without using a priori knowledge.
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1. Introduction

The measurement of Group III and Group V dopant-concentration profiles is very important
in semiconductor technology. Every measuring technique currently used has some disadvan-
tages. In the new nondestructive analytical technique called Grazing Emission X-ray Fluores-
cence Spectroscopy (GEXRF), the doped wafer is irradiated by primary x-rays which induce
fluorescence at the characteristic wavelengths of the atoms in the wafer. Since the dopant
concentrations are low, the fluorescence intensity emitted by the dopant is low also and hence
noise due to scattering by the background is generally high. To improve the signal-to-noise
ratio, the fluorescence intensity in GEXRF is detected at grazing emission angles (usually
< 100 mrad) with respect to the surface of the wafer. This mode of measurement distinguishes
GEXRF from convential x-ray fluorescence spectroscopy.

The feasibility of measuring x-ray fluorescence under grazing emission angles was studied
for the first time by Becker, Golovchenko and Patel [1]. The determination of concentrations,
layer thicknesses or both from GEXRF measurements is very sensitive to noise. Some inverse
problems occurring in GEXRF have recently been studied [2]. Inverse problems for a similar
technique called TEXRF have been studied in [3] and [4]. TEXRF can be considered as the
reciprocal of GEXRF in that the positions of the x-ray tube and the detector are interchanged,
i.e., in TEXRF the tube is positioned at grazing angles to the sample, while the fluorescence
radiation is detected at a fixed large angle. In all of these papers a priori information about the
concentrations is used to stabilize the inversion.

In this paper we will apply the maximum-entropy method to the reconstruction of dopant-
concentration profiles in silicon. The arsenic-concentration profiles used in the numerical
experiments are obtained from simulations of the ion-implantation process. We add Pois-
son noise of the photon-counting process to the simulated intensities that are used in the
reconstruction of the profiles.
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Figure 1. The experimental setup of GEXRF showing the x-ray tube, the sample, the double slit collimator and
the detector. The divergence �θ is also indicated. The detection angle θ is grossly exaggerated and was actually
< 0·1 rad.

In Section 2 we will briefly describe the mathematical model of GEXRF, i.e., the model
for computing emitted fluorescence intensities for a given concentration profile. It will be
shown that the inverse problem is equivalent to the inversion of the Laplace transform with
data on a bounded interval of the real axis. In Section 3 the maximum-entropy method will be
formulated as a convex constrained optimisation problem. Some of the mathematical proper-
ties of this optimization problem will be discussed in Section 4. In Section 5 we will briefly
describe the reconstruction by regularised inversion of the Laplace transform. In this method
the measured data are first extrapolated to the entire positive real axis and then the spectral
decomposition of the Laplace transform is used to compute the regularised inverse. In the
numerical experiments discussed in Section 6, we will compare the results obtained by using
the maximum-entropy method to those obtained by the spectral decompostion method (also
called Singular-Value Decomposition method) of the Laplace transform. A disadvantage of
the SVD for the Laplace transform is that it is not flexible. Another measurement strategy
which leads to a different instrumental factor than the one considered in this paper cannot be
taken into account in general. Furthermore, the incorporation of a priori information is not
straightforward. In contrast, the maximum-entropy method is flexible regarding a change of
the instrumental factor and the incorporation of a priori knowledge. A priori information is
very important to reduce the sensitivity to noise of the inversion. Some numerical experiments
for realistic profiles are described in Section 6. The results suggest that the reconstruction of
typical profiles of arsenic in silicon will be possible, provided noise levels are sufficiently low.

We would like to stress here the important role of modelling in the study of the feasability
of proposed new measurement techniques such as those considered in this paper. In simulating
the reconstructions of freely chosen concentration profiles, we can change signal-to-noise
ratios at will, investigate the influence of the shape of the profile on the instability, study the
influence of adding more data points, etc. In this way we can gain insight in the limitations of
the proposed technique that could not be acquired by experiments alone.
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Figure 2. Picture of the interior of the GEXRF spectrometer. The detector is behind the sample table and can
therefore not be seen.

2. The mathematical model

Figure 1 shows the setup of the laboratory GEXRF spectrometer. A circular region of the
doped silicon wafer with a diameter of approximately 3 cm is irradiated by radiation (power
≈ 5 W) from a conventional x-ray tube. Part of this radiation is absorbed and converted
into x-ray fluorescence radiation at the characteristic wavelengths of the elements present. A
double-slit collimator is used to choose the angle of detection and a crystal monochromator
(not shown) is used to select the wavelength of the characteristic radiation. Figure 2 is a
picture of part of the GEXRF spectrometer. As x-ray fluorescence is a very inefficient process,
virtually all the radiant power incident on the sample is dissipated as heat. Therefore the
sample table is air-cooled. In spite of the fact that the region between the sample table and the
x-ray tube is kept in a technical vacuum, a so-called cold finger is needed to prevent deposition
of carbon from the residual gas on the sample surface. The sample table can be rotated with
respect to the direction defined by the double-slit collimator between 0 and 100 mrad with a
minimum step size of 0·04 mrad. The double-slit collimator consists of two slits (5–500 µm)
125 mm apart, hence defining angular resolutions between 0·08 and 8 mrad. A more detailed
description of the laboratory instrument can be found in [5], [6].

In our model of the instrument we choose a Cartesian coordinate system (x, y, z) of which
the z-axis runs perpendicular to the surface of the wafer with z increasing into the sample and
with z = 0 at the surface of the wafer. Let f (z) be the concentration of the dopant at depth
z > 0. The concentration of the dopant is thus assumed independent of x and y. An example
of a typical concentration profile of arsenic in silicon is shown in Figure 3. It is seen that
the profiles are very shallow and that concentration values are low. Therefore, the complex
refractive index of the silicon wafer at all the wavelengths of interest can be considered to be
the same as that of un-doped silicon. For x-rays the real part of the refractive index n of silicon
(and of most other materials) is less than 1 and it is customary to write

n = 1 − δ + iβ, (2.1)
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Figure 3. The ‘exact’ concentration profile (continuous curve) simulated with TSUPREM-4 for an implantation
dose of 2×1015 As atoms/cm2 at 8 keV followed by thermal diffusion at 100 ◦C for 20 s. The dashed profiles are
obtained by regularised inversions of noisy fluorescence data at 120 equidistant angles using the maximum-entropy
method and Tikhonov’s inversion with both Morozov’s principle and GCV to determine the regularization para-
meter. The divergence admitted by the two slits is �θ = 0·4 mrad. The measurement time was 180 s per angle,
which corresponds to a mean relative error in the data of 0·74%.

where δ and β are small positive numbers of an order of 10−3 or less. Because the region
z < 0 between the sample table and the x-ray tube is in a technical vacuum, the refractive
index is 1 for z < 0. Let λ be the wavelength of a characteristic line of the dopant and let n
be the (known) refractive index of the wafer at this wavelength. The fluorescence intensity per
steradian emitted at an angle θ with respect to the surface of the wafer is given by (see [6], [7]

I (θ) = CT (θ)
∫ ∞

0
exp[−2kz Im

√
n2 − cos2 θ] f (z) dz, (2.2)

where Im means the imaginary part, k = 2π/λ is the wave number in vacuum, C is a known
constant which depends on the fluorescence wavelength λ and on the primary radiation,
but is independent of the emission angle θ , and T (θ) is the squared absolute value of the
transmission coefficient for the surface z = 0:

T (θ) =
∣∣∣∣ 2 sin θ

sin θ + √
n2 − cos2 θ

∣∣∣∣
2

. (2.3)

The exponential factor in the integrand accounts for absorption of the fluorescence radiation
by the sample. Because the real part of the refractive index is smaller than 1, there exists a
so-called critical angle defined by

cos θcrit = 1 − δ. (2.4)

At detection angles smaller than θcrit the wave inside the wafer is evanescent in the z-direction.
The imaginary part of the square root at the right-hand side of (2.2) is then relatively large;
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Figure 4. The fluorescence intensity I (θ) (dashed curve) emitted per second and per solid angle and the number
of counts per second Pdetector(θ) (continuous curve) measured by the detector as functions of the emission angle
θ for the the Lα line of the continuous dopant profile of arsenic in silicon shown in Figure 3. The slit widts
corresponds to the divergence �θ = 0·4 mrad. The Poisson noise that was added corresponds to a measurement
time of 180 s per angle and a mean relative error of 0·74%.

therefore only atoms very close to the surface contribute appreciably to the measured intensity,
which is consequently relatively low. This is illustrated by Figure 4 in which the emitted and
(simulated) detected intensities are shown of the Lα line of As corresponding to the profile of
Figure 3.

For small widths of the slits of the collimator, the intensity actually measured by the
instrument is, to a good approximation, given by ([6])

Pdetector(θ) = S(θ) I (θ), (2.5)

where S(θ) is a monotonically decreasing instrumental factor (see Figure 5).
It is assumed that the main source of noise in the data is Poisson noise caused by the photon

counting. This implies that, when the measurement time for angle θ is tθ , the relative error in
the data at that angle is 1/[Pdetector(tθ ) tθ ]1/2, i.e., the reciprocal of the square root of the total
counts Pdetector(tθ ) tθ . To study the influence of noise on the reconstruction, we will add several
levels of noise to the simulated data.

Define

p(θ) = 2k Im (n2 − cos2 θ)1/2, (2.6)

and

F(p) = I (θ)/CT (θ). (2.7)

Then (2.2) implies

F(p) =
∫ ∞

0
exp(−pz)f (z) dz. (2.8)

The interval (pmin, pmax) corresponding to the largest possible range of detection angles 0 <
θ < π/2 is given by
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Figure 5. The normalised instrumental factor S(θ)/S(0) as a function of the detection angle θ . The slit width
w = 24·7 µm and the slit distance l = 123·6 mm, which implies that the divergence of the detected beam is
�θ = 0·4 mrad.

pmin = p(π/2) = 2 k β, (2.9)

pmax = p(0) = 2 k Im(n2 − 1)1/2 ≈ 2
√

2 k Im(−δ + iβ)1/2. (2.10)

In Figure 6 the function p(θ) is shown for the Lα line of As in silicon. Because the detection
angles are limited to grazing angles (θ � π/2), pmin is in practice larger than 2 k β. However,
as is confirmed by the simulations, for angles larger than approximately 6◦, the data do not
contain additional information about the profile. Hence, the bulk of the information is con-
tained in the data corresponding to the smallest angles. We conclude that the concentration
profile has to be determined by an inversion of the Laplace transform using (noisy) data
restricted to a small interval of the positive real axis.

To understand the instability of the inversion of the truncated Laplace transform, it is
helpful to consider the inversion of the Laplace transform itself. The Laplace transform of
a square integral function f : (0,∞) → R can be shown to be square integrable. Hence,
the Laplace transform can be regarded as an operator L : L2(0,∞) → L2(0,∞). The
following properties of this operator are proved in, e.g., [8] and [9]. The operator L is sym-
metric and bounded, but it is not compact. Its spectrum is given by the interval [−π1/2, π1/2].
For −π1/2 ≤ λ ≤ π1/2 with λ �= 0, we define τ by τ = (1/π)arccosh(π/λ2). Then the
eigenfunction corresponding to λ is

eλ(z) = 1

|λ|(π2 − λ4)1/4

{
$(1/2 + iτ)1/2

z−1/2−iτ

√
2π

+ $(1/2 − iτ)1/2
z−1/2+iτ

√
2π

}
, (2.11)

when λ > 0 and

eλ(z) = 1

|λ|(π2 − λ4)1/4

{
$(1/2 + iτ)1/2

z−1/2−iτ

√
2π

− $(1/2 − iτ)1/2
z−1/2+iτ

√
2π

}
, (2.12)
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Figure 6. The function p(θ) for the As Lα line in silicon. We have pmin = 1·88 × 10−5 Å
−1

and

pmax = 2·98 × 10−2 Å
−1

.

when λ < 0, where $ is the Gamma function. The spectral decomposition of L is thus

L(f ) =
∫ √

π

−√
π

λ(f, eλ)eλ dλ, (2.13)

where (., .) is the scalar product of L2(0,∞). It is seen that, when λ→ 0, the eigenfunctions
become increasingly oscillatory. We remark that the eigenfunctions are not elements of the
space L2(0,∞). Furthermore, (2.13) should in general be interpreted as the principle-value
integral:

∫ √
π

−√
π

= lim
δ→0

∫ −δ

−√
π

+
∫ √

π

δ

, (2.14)

where the limit converges in general only in the sense of L2(0,∞).
It can be shown that, when f in L2(0,∞) satisfies L(f ) = 0, then f vanishes. Hence, the

solution of

L(f ) = F, (2.15)

provided it exists, is unique and given by

f = L−1(F ) =
∫ √

π

−√
π

1

λ
(F, eλ)eλdλ. (2.16)

However, this expression is extremely unstable due to the eigenvalue in the numerator of the
integrand and it is therefore useless when F is obtained from noisy measurements.

It is not difficult to see that the inverse of the Laplace transform is also unique when the
data are restricted to a bounded interval (pmin, pmax) of the positive real axis. In fact, for f
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in L2(0,∞), the function F(p) = L(f )(p) is analytic in the positive half space Rep > 0
and hence, if F is known on a countable set inside the interval (pmin, pmax), it has a unique
extension to a function in L2(0,∞). Hence, the concentration profile is uniquely determined
by a countable set of data inside the interval (pmin, pmax).

It may be expected that the inversion of the Laplace transform with data restricted to
(pmin, pmax) is even more unstable than the inversion of the Laplace transform with data on
the half line. It is thus clear that the inversion must be regularised.

The inversion of the (truncated) Laplace transform is a problem that is encountered fre-
quently in applied physics. In their recent review paper, Istratov et al. [10] mentioned many
different regularisation methods that have been tried in many different applications. One
method of regularisation is to replace the inverse problem by a constrained optimization
problem in which a certain object functional is optimised under the constraint that, for the
optimum profile f , L(f ) shall differ from the measured data by no more than the noise level.
In the next section we will consider an optimization problem of this type that was introduced
by Jaynes [11] and is called the maximum-entropy method.

3. The maximum-entropy method

In the maximum-entropy method it is necessary to assume a finite depth of the concentration
profile. Let d therefore be so large that for z > d the amount of the dopant is negligible.
Usually the total amount of the dopant is known from the ion-implantation process and we
therefore normalise the concentrations so that

∫ d
0 f (z) dz = 1. Suppose that the intensities are

measured at angles θi , i = 1, · · · ,M. Let pi correspond to angle θi and let Fδi correspond to
the noisy data at θi with the noise level described by the parameter δ. The Fδi are derived from
detected counts Pdetector(θi) by making use of (2.5) and (2.7).

The maximum-entropy method is formulated as a constrained optimisation problem P in
which the negative of the entropy functional is minimised over the set of normalised non-
negative functions in L1(0, d):

(P ) minimize f �→
∫ d

0
f (z) logf (z) dz, (3.1)

subject to:

f ∈ L1(0, d), f (z) ≥ 0 for almost all z ∈ [0, d],
and∫ d

0
f (z)dz = 1,

and

1

M

M∑
i=1

wi|L(f )(pi)− Fδi |2 ≤ ε,

where the wi are positive weigths with total sum 1:

1

m

m∑
i=1

wi = 1, (3.2)
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and ε > 0 is the regularisation parameter. By choosing the wi appropriately, we can give
additional weights to those angles for which the measurements are more accurate, i.e., for
which the number of counts is relatively large. We choose

wi ∝ Pdetector(θi) tθi /(F
δ
i )

2. (3.3)

Since 1/[Pdetector(θi) tθi ]1/2 is the relative error of the measurement at angle θi , wi as defined
by (3.3) is proportional to the reciprocal square of the absolute error at that angle. When exact
data are used in simulations (i.e., no noise is added), we choose all weigths wi to be equal and
ε to be very small. For stability the regularisation parameter ε must satisfy

ε ≥ 1

m

m∑
i

wi |F(pi)− Fδi |2, (3.4)

where F(pi) corresponds to the exact data at angle θi .
After Jaynes [11], [12] had stressed the importance of information-theoretic methods for

ill-posed problems in statistical mechanics, the maximum-entropy method was applied as a
general method for solving ill-posed problems in many different fields [13]. In our problem,
the differential form f (z) dz in (3.2) can be interpreted as the probability of finding a fluores-
cence atom in the layer of infinitesimal thickness dz at depth z. Given the measurements, the
solution to (3.2) is the most likely distribution of fluorescence atoms when a priori all depths
are considered equally probable. Accordingly, in the absence of measurements, the solution
of problem (3.2) is the constant profile.

When the a priori probability of a fluorescence atom being at a certain depth is a known
function of depth, the entropy functional can be modified to incorporate this knowledge. In
fact, when φ(z) is the a priori probability function, one should take as the entropy functional∫ d

0

{
f (z) log

f (z)

φ(z)
+ φ(z)− f (z)

}
dz. (3.5)

The solution without measurements is then equal to φ(z). One could apply this more general
entropy functional, for instance, when GEXRF is used to improve a concentration profile
that has been estimated initially using another measurent technique. Alternatively, a priori
knowledge about the concentration profile can be incorporated into the problem by adding
more contraints. For instance, when the widths of the slits would be increased to increase the
signal-to-noise ratio, it may be necessary to replace the multiplicative instrumental factor (2.5)
by a convolution integral. This kind of modification of the measurement procedure means that
the Laplace transform is replaced by some other linear operator. For the maximum-entropy
method this means that the expression for L(f ) in the constraint in problem (3.2) must be
replaced by the modified expression. However, for the SVD method described in Section 5,
the consequences are more far-reaching because the eigenfunctions of the new operator in
general are not known analytically. This would make this method much less actractive.

In the present paper we will not consider the incorporation of a priori knowledge, however
important that may be for the stabilisation of the inversion, but study instead the possibility of
reconstructing concentration profiles without using any a priori knowledge.

4. Some mathematical properties of the maximum-entropy method

Optimisation problem (3.2) has some nice properties. The function
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s �→ s log s, (4.1)

is strictly convex for s ≥ 0 and has a minimum of −1/e which is attained for s = 1/e. For
convenience we define s log s = +∞ for s < 0. It is then clear that for every measurable
function f (positive or not) the entropy functional

F (f ) =
∫ d

0
f (z) log f (z) dz, (4.2)

has a meaning, finite or infinite. It was shown in [14] that f �→ F (f ) is a strictly convex
functional on the domain {f ∈ L1(0, d); F (f ) < ∞}. Hence F is lower-semicontinuous
with respect to the weak topology on L1(0, d) inherited from the dual L∞(0, d). The func-
tional F has the following property:

Proposition 1 Suppose that fn → f in the weak topology of L1(0, d) and suppose that
limn→∞ F (fn) = F (f ) <∞. Then limn→∞ ‖fn − f ‖1 = 0.
Here ‖.‖1 is the norm on L1(0, d). This important property was proved in [15].

The following existence result applies to optimisation problem (3.2).

Theorem 1 If the feasible set of problem (3.2) is not empty (i.e. if ε is sufficiently large), the
optimisation problem (3.2) has a solution and the solution is unique.

This theorem was proved in [15] and [16] using the weak topology on L1(0, d). Since the
functional F is lower semicontinuous with respect to the weak topology on L1(0, d), the
theorem would follow immediately if it could be proved that the feasible set of (3.2) or some
equivalent set, were sequentially compact with respect to the weak topology. In fact, in that
case a minimising sequence would have a weakly converging subsequence which converges
to the solution of the optimisation problem. The feasible set in (3.2) is convex and closed, and
therefore it is weakly closed, but unfortunately it is not weakly compact. However, by using
a theorem of Dunford-Pettis-De La Vallée-Poussin [17, pp. 239] it was proved in [15], [16]
that, for every constant C > 0, the set defined by

AC = {f ∈ L1(0, d); F (f ) ≤ C}, (4.3)

is weakly sequentially compact in L1(0, d). Hence, it follows that the intersection of AC and
the feasible set of (3.2) is weakly sequentially compact. Since one may clearly replace the
feasible set of (3.2) by its intersection with AC for C large enough, the lower semi-continuity
of the object functional implies the existence of a solution of the optimisation problem. The
fact that this functional is strictly convex implies uniqueness of the solution.

In order to clarify the connection between the solutions of the maximum-entropy method
and the actual profile, we will prove below that, when the number of angles is increased,
the errors in the measurements are decreased and the regularisation parameter is decreased
in an appropriate way; the solutions of the optimisation problems converge in the L1(0, d)-
norm to the actual concentration. To be more precise, assume that superscript m refers to the
maximum-entropy method when m angles θmi i = 1, · · · ,m are used. Let pm1 < p

m
2 < · · · <

pmm be the values of p corresponding to the angles θmi at which noisy data Fmi , i = 1, · · · ,m
have been measured. Furthermore, let wmi be the weights used (not necessarily given by (3.4))
and let εm be the regularisation parameter. Let f m be the solution of optimisation problem
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(3.2) corresponding to these choices. Finally, let F∞(p) be the exact data and let f∞ be the
exact concentration profile so that

L(f∞) = F∞. (4.4)

We define the noise level δm in the mth data set Fm by

δm = 1

m

m∑
i=1

wmi |Fmi − F∞(pmi )|2. (4.5)

We assume furthermore that for some pmin ≤ p̃min < p̃max ≤ pmax we have

pm1 = p̃min and pmm = p̃max, for all m, (4.6)

and that there exist constants C1 > 1 and C2 > 0 such that for all m we have

1

C1m
≤ pmi+1 − pmi ≤ C1

m
, for all i = 1, · · · ,m− 1, (4.7)

and

wmi ≥ C2, for all i = 1, · · · ,m. (4.8)

Note that property (4.7) means that, in the limit m→ ∞, the angles for which measured data
are available become equidistributed. Furthermore, if we would choose the wmi according to
(3.4), property (4.8) means that no angle exists for which the absolute error in the measurement
can increase beyond all bounds.

Theorem 2 When

lim
m→∞ δ

m = 0 and lim
m→∞ ε

m = 0, (4.9)

such that εm ≥ δm for all m, the solutions of the maximum-entropy method converge to the
exact concentration profile in the L1 norm:

lim
m→∞

∫ d

0
|f m − f∞| dz = 0. (4.10)

The theorem is proved in the Appendix.

Convergence in the L1 norm is, of course, not a very strong statement. In practice one
would like to have a stronger result, e.g., convergence in the maximum norm when the real
profile f∞ is continuous, but it seems that this has not been proved so far.

In the numerical computations that will be described in Section 6 we will compare the
profiles that we reconstruct using the maximum-entropy method with the chosen real profiles
f∞. In addition, we compare the performance of the maximum-entropy method with another
regularisation method based on the spectral decomposition of the Laplace transform. For
completeness we briefly describe this regularisation method in the following section.

5. Reconstruction using the regularised inversion of the Laplace transform

Let, as before, f∞ be the real profile and F∞ be the Laplace transform of f∞:
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L(f∞) = F∞. (5.1)

Let Fδ denote a noisy finite data set, with δ a value for the level of the noise. The set of points
pi corresponding to the data is contained in the interval [p̃min, p̃max] and includes p̃min and
p̃max. In the reconstruction method based on the regularised inversion of the Laplace transform
the data set is first interpolated linearly inside the interval (p̃min, p̃max) and extrapolated to the
entire half line p ≥ 0. For the extrapolation to 0 ≤ p ≤ p̃min the coefficients aj in

Fδ(p) =
N∑
j=0

ajp
j , (5.2)

are determined by fitting the given values of Fδ in the interval [p̃min, p̃max]. For p > p̃max use
is made of the formula

Fδ =
M∑
j=1

bj

pj
, (5.3)

where the bj are again determined by fitting the data in the interval [p̃min, p̃max]. The choices
forN and in particular forM are crucial here. Too small values give inaccurate extrapolations;
too large values cause instabilities due to the noise. In practice N,M ≈ 4 is appropriate.

Once the extrapolations have been performed, the profile is reconstructed by use of a
regularised version of formula (2.16) for the inverse Laplace transform:

f δρ =
∫ √

π

−√
π

λ

λ2 + ρ (F
δ, eλ) eλ dλ, (5.4)

where ρ > 0 is the regularisation parameter. The function f δρ is an approximation of the profile
f∞, obtained by the reconstruction (i.e., the extrapolation of the data and the application of
formula (5.4)). The regularisation parameter must not be chosen too large to ensure that the
reconstructed profile does not differ too much from the actual profile and it must not be chosen
too small to prevent instabilities due to noise in the data. Morozov’s discrepancy method [18,
pp. 87–94] and generalised cross validation (GCV) [19, Chapter 4] are two methods by which
ρ can be determined automatically from the noisy data. Both methods have been implemented
for application in GEXRF and it was found that they give similar results.

Because the eigenfunctions eλ(z) become increasingly oscillatory for λ→ 0, the numerical
integrations to compute the scalar products (F δ, eλ) and the integrals (5.4) should be done such
that the error made is uniformly small, irrespective of the period of the oscillations (for details
we refer to [20]). Provided the numerical integrations are done in this way, the described
method is accurate and very fast because the extrapolations require only small computational
efforts and because the inversion fromula (5.4) does not require a matrix inversion. The main
disadvantage of the method is that it can only be applied to the unconstrained inversion
problem. For more details about the application of this method to GEXRF we refer to [20].

6. Numerical results

In the numerical computation of the solution of the maximum-entropy method the concentra-
tion profiles are approximated by piecewise linear functions. The grid that we used consisted
typically of 60 equidistant points zi . The optimisation problem was then solved numerically in
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the 60-dimensional space of piecewise linear functions. This requires a lot of computing power
(≈ 40 m. of CPU on a HP N4000/540) and the convergence of the numerical optimisation
is sometimes rather slow. But eventually the solution of the optimisation problem is always
obtained, irrespective of the initial guess for the profile. The reason is that the object functional
is strictly convex and therefore local minima do not exist.

We assume that the laboratory GEXRF instrument described in [5] is used in the simulated
experiments. However, the x-ray tube is assumed to have a rotating Rh anode by which the
emitted power is increased to 20 kW. The two slits of the collimator are 20 mm wide in the
direction perpendicular to the plane of drawing in Figure 1. Their distance is 123·6 mm and the
minimum width of the slit in the plane of drawing is 10 µm, which corresponds to a minimum
divergence of�θmin = 0·16 mrad. The minimum step size in the detection angle is 0·05 mrad,
which is consequently well below the minimum divergence.

In the examples that we will discuss below the dopant is arsenic (As). We simulated the
dopant concentration profiles of As using the package TSUPREM-4 (Avant! Corporation, Fre-
mont, Ca, U.S.A). With this package the ion implantation process and subsequent nonlinear
thermal diffusion can be simulated under various experimental conditions. The fluorescence
intensities used as data correspond to the Lα line with a wavelength of 9·671 Å. At this
wavelength we have in silicon β = 1·4475 × 10−5 and δ = 2·63 × 10−4. Using (2.4) we
conclude that the critical angle is 22·9 mrad. It was found to be sufficient to restrict the
detection angles to 0 mrad< θ <50 mrad (larger angles do not contain additional information
of the profile). For equidistant detection angles the maximum number of angles corresponding
to a given divergence �θ is thus given by

Nθ = 0 ·05/�θ. (6.1)

Choosing more detection angles would amount to oversampling the data. For the minimum
slit width of 10 µm, Equation (6.1) implies Nθ = 312.

The concentration profile obtained with TSUPREM-4 when 2 × 1015 As atoms/cm2 of
energy 8 keV are implanted into silicon and the implantation is followed by thermal diffusion
at 1000 ◦C for 20 s is given by the continuous curve shown in Figure 7. The maximum
concentration is only 7·6 × 1020 atoms/cm3 at a depth of 100 Å. The simulated fluorescence
intensities at the Lα line are correspondingly low. They are shown in Figure 4. The slit width
was assumed to be w = 24·7 µm, which corresponds to a divergence of �θ = 0·4 mrad. The
maximum number of equidistant angles of detection given by Equation (6.1) is then 125.

Also shown in Figure 7 are reconstructed profiles that we obtained using exact data Pdetector

(θ) (i.e., without noise) at 120 equidistant angles between θmin = 1 mrad and θmax = 50 mrad.
The results of both the maximum-entropy method and Tikhonov’s regularised inversion (GCV)
are shown. The GCV method yields for the regularisation parameter ρGCV = 9·3 × 10−5 (the
regularisation parameter is non-zero due to small numerical and rounding errors and due to
errors caused by the extrapolations). The order of the extrapolation was 3 for both large and
small angles. The weights w̃i in the inequality constraint in (3.2) of the maximum-entropy
method were all chosen to be equal to 1 and ε was chosen to be very small, namely

ε = 0·5 × 10−7 × 1

m

m∑
i=1

|Fδi |2 (6.2)

It can be seen in Figure 7 that the profile we obtained using the maximum-entropy method
differs slightly from the profile found by means of Tikhonov’s method. The former is better at
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Figure 7. For the same concentration profile as in Figure 3, the dashed curves shown are obtained by inversion of
the fluorescence data without noise being adding at 120 equidistant angles using the maximum-entropy method
and Tikhonov’s method with the regularization parameter determined by GCV. The divergence admitted by the
two slits is again �θ = 0·4 mrad.

depths above 100 Å where the latter slowly oscillates. The maxium value of the solution
obtained by the maximum-entropy method is slightly too high. The result obtained with
Tikhonov’s method can be improved further by using M = 6 in extrapolation (5.3). The
extrapolation of the data to small angles is much more critical than that to large angles. The
reconstructed profile found with the maximum-entropy method can be improved somewhat
by using more data points (angles).

Next we will consider the inversion of data to which Poisson noise was added. The con-
centration profile of Figure 3 was reconstructed using the the maximum-entropy method and
using Tikhonov’s method with data to which Poisson noise was added corresponding to a
measurement time of 180 s per angle. This means that the mean relative error (computed over
all angles) in the data was 0·74%. In this case the weights wi were chosen to be proportional
to the reciprocal of the square of the absolute error in the data (see (3.4)). Regularisation
parameter ε was chosen as follows

ε = 1

m

m∑
i=1

wi|�Fi |2, (6.3)

where �Fi is the estimated absolute error in the Fi . In Tikhonov’s inversion, Morozov’s
discrepancy method and the GCV method gave similar values for regularisation parameter
ρ (0·68 × 10−3 and 0·18 × 10−2, respectively) and the reconstructed concentration pro-
files are similar. The reconstructed profile shown in Figure 3 obtained using the maximum-
entropy method shows a maximum concentration that is too high. The solutions obtained by
Tikhonov’s method show an oscillation in the first 50 Å. For this profile, the maximum-entropy
method turned out to be more sensitive to noise than Tikhonov’s method. Note that, although
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Figure 8. The concentration profile computed by TSUPREM-4 (continuous curve) and the profiles obtained
through regularised inversions of noisy fluorescence data at 120 equidistant angles using the maximum-entropy
method and Tikhonov’s inversion with both Morozov’s principle and GCV (dashed curves) to determine the
regularization parameter. The divergence was again�θ = 0·4 mrad. The concentration profile was obtained using
an implantation dose of 2 × 1016 atoms/cm2 at 8 keV, followed by thermal diffusion at 1000 ◦C for 1 minute. The
measurement time was 900 s. per angle, which corresponds to a mean relative error in the data of 0·25%.

in Tikhonov’s method it is not required explicitly that the concentration must be non-negative;
negative values were never obtained.

For a dose of 2 × 1016 atoms/cm2, and an energy that is again 8 keV and annealing at
1000 ◦C for 1 minute, TSUPREM-4 predicts the profile shown as the continuous curve in
Figure 8. Again Poisson noise was added to the simulated fluorescence intensities at the
120 equidistant angles corresponding to a measurement time of 900 s per angle. Since the
concentrations are higher than in the previous cases, the fluorescence intensities are higher,
and therefore the relative errors for the same measurement time are smaller. The mean of the
relative errors in the data is now 0·25%.

The reconstructed profile of the maximum-entropy method in particular is now much better
than for the profile of Figure 3. The values for the regularisation parameter for Tikhonov’s
method were ρ = 0·10×10−3 using Morozov’s method and ρ = 0·27×10−3 using GCV. The
primary reason why the reconstruction was better in this case than in the case of Figure 3 is, of
course, that the concentration is higher, and hence the noise is lower for the same measurement
time. But also for the same mean relative error in the data, the profile shown in Figure 8 is
easier to reconstruct than that of Figure 3. It is less steep because of the longer annealing
time, and therefore the coefficients corresponding to small eigenvalues in the expansion of the
profile on the basis of eigenfunctions of the Laplace-transform operator have less weight than
in the case of Figure 3.

Since for Poisson noise the relative error in the data decreases in proportion to only the
square root of the total counts, increasing measurement times and/or the source strength gives
only a small improvement in the reconstructed profiles. One can use simulations to compute
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the strength of the x-ray source that would be necessary to achieve a prescribed accuracy in
the reconstruction of a given profile using a desired measurement time per angle. For example,
when it is required that the measurement time be 30 s for all angles, so that for 120 angles the
total measurement time is 1 hour, the required intensity should be approximately 200 times
larger than that yielded by a conventional x-ray tube with a rotating anode. Therefore, in actual
experiments a conventional x-ray tube can in general not be used and a high-power source,
such as a synchrotron, is needed. To what extent a priori knowledge about the profile could
be traded off against a lower exposure dose remains a subject for future investigation.

The accurate reconstruction of the profiles for sufficiently high signal-to-noise ratios is
reason for the cautious conjecture that in problems of chemical analysis, where concentration
levels are not low, shallow concentration profiles can be determined accurately using GEXRF.
Of course, when the concentrations are not low, the refractive index will in general be a func-
tion of the unknown concentration and the emitted fluorescence intensity will consequently
depend nonlinearly on the concentration. However, to obtain the emitted intensity, it will in
general not suffice merely to substitute the relationship between the refractive index n and
the unknown concentration f in formula (2.2). In fact, a more drastic modification of (2.2)
will be necessary, because the radiation is scattered by the inhomogeneous refractive index.
It seems nevertheless conceivable that the ill-posedness of the problem will still be caused
mainly by the absorption of radiation in the sample, i.e., by the exponential factor occuring in
(2.2). The conclusion drawn for the case of low concentrations, namely that the reconstruction
of concentration profiles is possible for sufficiently high signal-to-noise ratio, therefore leads
us to expect that shallow profiles with normal concentration levels can be reconstructed from
GEXRF data obtained with a conventional laboratory x-ray tube as source.

7. Conclusions

The determination of concentration profiles of a dopant in silicon using an angle scan of noisy
x-ray intensities obtained by Grazing Emission X-Ray Fluorescence Spectroscopy is an ill-
posed problem. It can be formulated as a problem of the inversion of the Laplace transform
for incomplete and noisy data. We have formulated and applied the maximum-entropy method
to this inversion. The maximum-entropy method is a flexible method which allows us to
change the constraints for the concentration profiles easily. Hence, a priori knowledge about
the profile can be incorporated.

Some properties of the maximum-entropy method were discussed. The maximum-entropy
method leads to a convex constrained optimization problem which has a unique solution. It
was shown that the solutions of the discretised optimization problems always converge in the
sense of L1 to the actual concentration profile, provided that the noise is reduced and the
number of data is increased.

Numerical experiments using simulated data to which realistic values of Poisson noise
were added showed that the reconstruction of the profile is possible without a priori knowl-
edge when the signal-to-noise level is sufficiently high. The noise levels are required to be so
small and the measurement times, when using a conventional x-ray tube are consequently so
long, that the necessary stability of the spectrometer could not be maintained. Hence, for the
low concentration values considered in this paper, synchroton radiation will have to be used.
On the other hand, for problems with higher concentration values, the signal-to-noise ratio
may be sufficiently high, so that a conventional x-ray source might well be sufficient. But in
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that case the unknown concentration profile influences the refractive index of the sample and
hence the inverse problem becomes nonlinear. It is reasonable to expect, however, that the
sensitivity to noise will not be worse in the nonlinear case than in the linear one.
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Appendix A: Proof of Theorem 2

In the proof Proposition 1 will be essential. We define the quadratic forms

Gm(F ) = 1

m

m∑
i=1

wmi |F(pmi )|2, (A1)

and denote the feasible set of the mth optimisation problem by Am:

Am = {f ∈ L1(0, d); f (z) ≥ 0 a.e., F (f ) <∞, ∫ d
0 f (z) dz = 1,

Gm(L(f )− Fm) ≤ εm}.
(A2)

Definition (4.5) of δm implies that

Gm(L(f∞)− Fm) = δm ≤ εm, (A3)

hence the exact profile is in the feasible sets of all optimisation problems:

f∞ ∈ Am, for all m. (A4)

Therefore

F (f m) ≤ F (f∞), (A5)

which implies that the sequence {F (f m)} is bounded. By the relative compactness of the set
AC mentioned above, there exists a subsequence of {f m}, which we will continue to write as
{f m}, which convergences weakly in L1(0, d), i.e., there exists g ∈ L1(0, d) such that

lim
m→∞ f

m = g, weakly in L1(0, d). (A6)

We will show that g = f∞. The weak convergence (A6) implies that

lim
m→∞ L(f m)(p) = L(g)(p), for all p ≥ 0. (A7)

Because the weakly converging sequence {f m} is bounded in the norm of L1(0, d), the corre-
sponding sequence of Laplace transforms {L(f m)} is an equicontinuous uniformly bounded
sequence of functions on [0,∞). Hence, by the Ascoli-Arzelá theorem, there exists a subse-
quence, which we again will write as {fm}, such that on a compact set {L(f m)} converges
uniformly to L(g). Now for F, F̃ ∈ C[p̃min, p̃max] we have
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∣∣∣

≤ 1

m

m∑
i=1

wmi

∣∣∣F(pmi )+ F̃ (pmi )− 2F∞(pmi )
∣∣∣ ∣∣∣F(pmi )− F̃ (pmi )

∣∣∣
≤

(
‖F − F∞‖∞ + ‖F̃ − F∞‖∞

)
‖F − F̃‖∞.

(A8)

Here and in the following the norm ‖F‖∞ is the maximum norm on the space C[p̃min, p̃max].
By substituting F = L(f m) and F̃ = L(g) we obtain∣∣Gm(L(f m)− F∞)− Gm(L(g)− F∞)

∣∣
≤ (‖f m‖1 + ‖g‖1 + 2‖F∞‖∞) ‖L(f m)− L(g)‖∞,

(A9)

where we used ‖L(f )‖∞ ≤ ‖f ‖1 for f ∈ L1(0, d). As a weakly converging sequence, {f m}
is bounded with respect to the L1-norm and because {L(f m)} converges uniformly to L(g)
on the interval [p̃min, p̃max], it follows from (A9) that

lim
m→∞

[
Gm(L(f m)− F∞)− Gm(L(g)− F∞)

] = 0. (A10)

But

lim
m→∞ Gm(L(f m)− F∞) ≤ 2 lim

m→∞ Gm(L(f m)− Fm)+ 2 lim
m→∞ Gm(Fm − F∞)

≤ 2 lim
m→∞ ε

m + 2 lim
m→∞ δ

m = 0,
(A11)

and hence also

lim
m→∞ Gm(L(g)− F∞) = 0. (A12)

Then, using (4.7), (4.8) and (A12), we have

lim
m→∞

m−1∑
i=1

[L(g)(pmi )− F∞(pmi )]2(pmi+1 − pmi ) =

≤ C1

C2
lim
m→∞

1

m

m∑
i=1

wmi [L(g)(pmi )− F∞(pmi )]2

= C1

C2
lim
m→∞ Gm(L(g)− F∞) = 0.

(A13)

Now property (4.7) implies for every function F which is continuously differentiable on
[p̃min, p̃max]:∣∣∣∣∣
∫ p̃max

p̃min

F(p) dp −
m−1∑
i=1

F(pmi ) (p
m
i+1 − pmi )

∣∣∣∣∣ ≤
m−1∑
i=1

∫ pmi+1

pmi

∣∣F(p)− F(pmi )∣∣ dp

≤ ‖F ′‖∞
m−1∑
i=1

1

2

(
pmi+1 − pmi

)2 ≤ C2
1

2m
‖F ′‖∞.

(A14)

Hence for continuously differentiable F :
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∫ p̃max

p̃min

F(p) dp = lim
m→∞F(p

m
i )(p

m
i+1 − pmi ). (A15)

Apply this to F = [L(g)− F∞]2, and use (A13)) to conclude that
∫ p̃max

p̃min

[
L(g)(p)− F∞(p)

]2
dp = 0. (A16)

Hence L(g) = F∞ on [p̃min, p̃max] and by the uniqueness of the Laplace transform it follows
that

g = f∞. (A17)

Hence, limm→∞ f m = f∞ weakly in L1(0, d) and because f �→ F (f ) is lower semicontin-
uous with respect to the weak topology, we get

F (f∞) ≤ lim inf
m→∞ F (f m) ≤ lim sup

m→∞
F (f m) ≤ F (f∞), (A18)

where the last inequality follows from (A5). Hence

lim
m→∞ F (f m) = F (f∞). (A19)

Then Proposition 1 implies that

lim
m→∞ ‖f m − f∞‖1 = 0. (A20)

We conclude therefore that the sequence {f m}, and also every subsequence of {f m}, has
a subsequence which converges in L1(0, d). Hence, the sequence {f m} itself converges in
L1(0, d). This completes the proof.
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